— 信号処理特論 / Advanced Signal Processing —

音場の計測と制御 Sound Field Analysis and Control

小山 翔一 / Shoichi Koyama

東京大学大学院情報理工学系研究科 Graduate School of Information Science and Technology, UTokyo

Analysis and control of acoustic field

Analysis

- Visualization and reconstruction of acoustic field
- Estimation of source locations and room-acoustic parameters
- Spatial sound field recording

Control

- High-fidelity spatial audio reproduction
- Directivity control and local reproduction
- > Spatial active noise control

From theory to application of signal processing and inverse problems for acoustic fields

Summary of sound field analysis

Analysis inside region without sources

- Sound field reconstruction based on harmonic analysis of infinite order [Ueno+ IEEE SPL 2018]
- Optimization algorithm for sparse representation of acoustic field [Murata+ IEEE TSP 2018]

Analysis inside region including sources

- Sparse sound field decomposition in reverberant environment [Koyama+ IEEE JSTSP 2019]
- Estimation of source parameters based on Reciprocity Gap Functional [Takida+ Elsevier SP 2020]
- Separation of internal and external sound fields [Takida+ EUSIPCO 2018]

Summary of sound field control

- Sound field recording and reproduction in wave-number domain [Koyama+ IEEE(/ACM) TASLP 2013, 2014, JASA 2016]
- Super-resolution in recording and reproduction [Koyama+ IEEE JSTSP 2015, JASA 2018]
- Sound field control based on weighted mode-matching [Ueno+ IEEE/ACM TASLP 2019]
- Optimization of source and sensor placement for sound field control [Koyama+ IEEE/ACM TASLP 2020, IEEE ICASSP 2018]
- Spatial active noise control based on kernel interpolation [Ito+IEEE ICASSP 2019, 2020]

Today's topics

- Sparse modeling and its application to acoustic signal processing
- Optimal source and sensor placement for sound field cotnrol

SPARSE MODELING AND ITS APPLICATION TO ACOUSTIC SIGNAL PROCESSING

Linear inverse problem

Suppose that measurement $\mathbf{y} \in \mathbb{R}^M$ is modeled by linear equation with unknown variable $\mathbf{x} \in \mathbb{R}^N$ and sensing matrix $\mathbf{D} \in \mathbb{R}^{M \times N}$ as

$$y = Dx + n$$

where $\mathbf{n} \in \mathbb{R}^{M}$ is additive noise.

- ➤ Estimation problem of **x** with given **y** and **D** is referred to as linear inverse problem.
- \triangleright Consider the case of N > M, i.e., underdetermined problem. This type of problem (normally) has infinitely many solutions, which means preferable features should be imposed on the estimate.

Least-norm solution

➤ Typical approach to solve underdetermined linear inverse problem is least-norm solution (a.k.a. minimum-norm solution), where the following optimization problem is considered:

$$\underset{\mathbf{x}}{\text{minimize}} \|\mathbf{x}\|_2^2 \quad \text{subject to} \quad \mathbf{y} = \mathbf{D}\mathbf{x}$$

This problem can be solved by the method of Lagrange multiplier as

$$\hat{\mathbf{x}} = \mathbf{D}^\mathsf{T} \left(\mathbf{D} \mathbf{D}^\mathsf{T} \right)^{-1} \mathbf{y}$$

Regularized solution to increase robustness:

$$\hat{\mathbf{x}} = \mathbf{D}^\mathsf{T} \left(\mathbf{D} \mathbf{D}^\mathsf{T} + \lambda \mathbf{I} \right)^{-1} \mathbf{y}$$

Sparse modeling

> Sometimes we would like to impose sparsity on the estimate.

- Occam's razor (law of parsimony):
 - Entities should not be multiplied without necessity.

Example: images in wavelet domain

> Representing image with small number of coefficients

<u>Original</u>

10% of coefs

3% of coefs

Distribution of coefficients is sparse:

Sparsity-inducing norm

> Least-norm solution:

$$\underset{\mathbf{x}}{\text{minimize}} \|\mathbf{x}\|_{2}^{2} \quad \text{subject to} \quad \mathbf{y} = \mathbf{D}\mathbf{x}$$

> Solution with sparsity-inducing norm:

$$\underset{\mathbf{x}}{\text{minimize}} \|\mathbf{x}\|_p \quad \text{subject to} \quad \mathbf{y} = \mathbf{D}\mathbf{x} \qquad (0 \le p \le 1)$$

$$\|\mathbf{x}\|_p = \begin{cases} \left(\sum_{n=1}^N |x_n|^p\right)^{\frac{1}{p}}, & 0 Counting the number of nonzero elements$$

– $\|\cdot\|_p$ is called ℓ_p -norm whereas axioms of norm is not valid for 0

Sparsity-inducing norm

ightharpoonup Contour of $\|\mathbf{x}\|_p = c$ with constant c in 2D case.

Example of sparse solution

 \triangleright Basis pursuit for ℓ_1 -norm minimization problem

How to solve sparse optimization problem?

- ➤ Algorithms for solving sparse optimization problem can be classified into three categories:
 - Greedy algorithm
 - (Orthogonal) matching pursuit, etc…
 - Convex relaxation
 - Basis pursuit, (Accelerated) proximal gradient, etc...
 - Majorization-minimization algorithm
 - Iteratively-reweighted least squares, etc…
 - Probabilistic inference
 - Sparse Bayesian learning, etc…

June 16, 2020 14

Majorization-minimization algorithm

 \succ Construct surrogate function $\mathcal{L}^+(\mathbf{x}, \boldsymbol{\xi})$ for (non-convex) objective function $\mathcal{L}(\mathbf{x})$

$$\mathcal{L}(\mathbf{x}) \leq \mathcal{L}^+(\mathbf{x}, oldsymbol{\xi})$$

$$\mathcal{L}(\mathbf{x}) = \mathcal{L}^+(\mathbf{x}, \mathbf{x})$$

Alternately updating parameter of surrogate function and parameter to be optimized

$$\mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x}} \mathcal{L}^{+}(\mathbf{x}, \mathbf{x}^{(k)})$$

Monotonic non-increase of objective function is guaranteed

$$\mathcal{L}(\mathbf{x}^{(k+1)}) \leq \mathcal{L}^{+}(\mathbf{x}^{(k+1)}, \mathbf{x}^{(k)})$$
$$\leq \mathcal{L}^{+}(\mathbf{x}^{(k)}, \mathbf{x}^{(k)})$$
$$= \mathcal{L}(\mathbf{x}^{(k)})$$

 \triangleright MM algorithm for ℓ_p -regularization problem

$$\underset{\mathbf{x}}{\text{minimize }} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{p}^{p} \qquad (0$$

Sparsity of x can be induced by the regularization term, but the objective function becomes non-convex for

$$0$$

Plot of $|x|^p$ [Elad 2010]

- > Generalized Gaussian distribution (GGD)
 - P.d.f. of GGD

$$f(u; p, \beta) = \frac{p}{2\sqrt[p]{2}\beta\Gamma\left(\frac{1}{p}\right)} e^{-\frac{|u|^p}{2\beta^p}}$$

p controls the shape of p.d.f.

> MAP estimation w/ prior distribution of GGD

$$p(\mathbf{x}) = \left(\frac{p}{2\sqrt[p]{2}\beta\Gamma\left(\frac{1}{p}\right)}\right)^N \exp\left(-\frac{1}{2\beta^p}\sum_n|x_n|^p\right)$$
: Prior distribution

$$\Rightarrow \mathbf{x}_{\text{MAP}} = \arg\min_{\mathbf{x}} ||\mathbf{y} - \mathbf{D}\mathbf{x}||_{2}^{2} + \frac{\sigma^{2}}{\beta^{p}} \sum_{n} |x_{n}|^{p}$$

Identical to ℓ_p -norm penalty

- \succ Consider to develop surrogate function of $\,\ell_p$ -regularization term for $\,0$
- \succ Concave function x^{α} (0 < $\alpha \le 1$) lies below tangent quadratic function x^2 at η ; therefore,

$$\|\mathbf{x}\|_{p}^{p} = \sum_{n=1}^{N} |x_{n}|^{p} \le \sum_{n=1}^{N} \left\{ \frac{p}{2} \eta_{n}^{p-2} x_{n}^{2} + \left(1 - \frac{p}{2} \eta_{n}^{2}\right) \right\}$$

> Surrogate function is developed as

$$\mathcal{L}(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2}^{2} + \lambda \sum_{n=1}^{N} |x_{n}|^{p}$$

$$\leq \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2}^{2} + \lambda \frac{p}{2} \sum_{n=1}^{N} \eta_{n}^{p-2} x_{n}^{2} + C$$

$$:= \mathcal{L}^{+}(\mathbf{x}, \boldsymbol{\eta})$$

- C is variable not related to optimization, $\eta = [\eta_1, \dots, \eta_N]$, and equality holds for $\mathbf{x} = \eta$.
- Update rule of x

$$\mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2}^{2} + \frac{1}{2} \lambda \mathbf{x}^{\mathsf{T}} \mathbf{P}^{(k)} \mathbf{x}$$

$$\left(\mathbf{P}^{(k)}\right)_{n,n'} = \begin{cases} p\left(x_n^{(k)}\right)^{p-2}, & n = n'\\ 0, & \text{otherwise} \end{cases}$$

➤ This minimization problem is simply solved as weighted least-squares solution:

$$\mathbf{x}^{(k+1)} = \left(\mathbf{D}^\mathsf{T}\mathbf{D} + \lambda\mathbf{P}^{(k)}\right)^{-1}\mathbf{D}^\mathsf{T}\mathbf{y}$$

ightharpoonup Rewrite with $\mathbf{W}^{(k)} = (\mathbf{P}^{(k)})^{-1/2}$ and $\mathbf{A}^{(k)} = \mathbf{D}\mathbf{W}^{(k)}$ by using matrix inversion lemma as

$$\mathbf{x}^{(k+1)} = \mathbf{W}^{(k)} \mathbf{A}^{(k)\mathsf{T}} \left(\mathbf{A}^{(k)} \mathbf{A}^{(k)\mathsf{T}} + \lambda \mathbf{I} \right)^{-1} \mathbf{y}$$

– Inverse of $N \times N$ matrix is turned into inverse of $M \times M$ matrix. Besides, elements of $\mathbf{W}^{(k)}$ are stably computed compared to $\mathbf{P}^{(k)}$.

Iteratively-reweighted least-squares algorithm

 \blacktriangleright MM algorithm for ℓ_p -regularization problem is called iteratively-reweighted least-squares or focal underdetermined system solver (FOCUSS)

[Gorodnitsky+ 1997, Figueiredo+ 2007]

> Summary of algorithm:

Set initial value $\mathbf{x}^{(0)}$, then repeat

- Update $\mathbf{W}^{(k)} = \operatorname{diag}\left(p\left(x_n^{(k)}\right)^{p-2}\right)$
- Update $\mathbf{A}^{(k)} = \mathbf{D}\mathbf{W}^{(k)}$
- Update $\mathbf{x}^{(k+1)} = \mathbf{W}^{(k)} \mathbf{A}^{(k)\mathsf{T}} \left(\mathbf{A}^{(k)} \mathbf{A}^{(k)\mathsf{T}} + \lambda \mathbf{I} \right)^{-1} \mathbf{y}$

June 16, 2020 21

Beyond sparsity

- ➤ Various signal structures other than sparsity can be induced by vector or matrix norms.
- ➤ Signal separation by using constraint of such norms is well studied in the context of convex optimization [McKoy+ 2014].

Structure	Atomic gauge
Sparse vector	ℓ^1 -norm
Binary sign vector	ℓ^∞ -norm
Low-rank matrix	Nuclear norm / Schatten 1-norm
Orthogonal matrix	Schatten ∞-norm
Row-sparse matrix	Row- ℓ^1 -norm

June 16, 2020 22

Proximal gradient method

> Consider the following optimization problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) + g(\mathbf{x})$$

- where $f,g: \mathbb{R}^p \to \mathbb{R} \cup \{\infty\}$ are proper convex lower semicontinuous function, which are denoted as $f, g \in \Gamma_0(\mathbb{R}^p)$, and f is differentiable.
- This type of problem can be solved by proximal gradient method.

Set initial value
$$\mathbf{x}^{(0)}$$
, $\gamma > 0$, then repeat • Update $\mathbf{x}^{(k+1)} = \mathrm{prox}_{\gamma g} \left(\mathbf{x}^{(k)} - \gamma \nabla f(\mathbf{x}^{(k)}) \right)$

Proximal operator:
$$\operatorname{prox}_{\gamma f}(\mathbf{v}) = \underset{\mathbf{x} \in \operatorname{dom}(f)}{\operatorname{arg min}} \left\{ f(\mathbf{x}) + \frac{1}{2\gamma} ||\mathbf{x} - \mathbf{v}||_2^2 \right\}$$

ADMM

Consider the following optimization problem:

$$\underset{\mathbf{x},\mathbf{z}}{\text{minimize}} f(\mathbf{x}) + g(\mathbf{z}) \text{ subject to } \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}$$

- where $f \in \Gamma_0(\mathbb{R}^p)$, $g \in \Gamma_0(\mathbb{R}^q)$, and $\mathbf{A} \in \mathbb{R}^{M \times p}$, $\mathbf{B} \in \mathbb{R}^{M \times q}$
- This type of problem can be solved by alternating direction method of multipliers (ADMM) [Boyd+ 2011]

Set initial value $\mathbf{z}^{(0)}, \boldsymbol{\theta}^{(0)}$, then repeat

• Update
$$\mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}^{(k)} - \mathbf{y} + \boldsymbol{\theta}^{(k)} \right\|_{2}^{2} \right\}$$

• Update
$$\mathbf{z}^{(k+1)} = \arg\min_{\mathbf{z}} \left\{ g(\mathbf{x}) + \frac{\rho}{2} \left\| \mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{B} \mathbf{z} - \mathbf{y} + \boldsymbol{\theta}^{(k)} \right\|_{2}^{2} \right\}$$

• Update
$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} + \rho \left(\mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{B} \mathbf{z}^{(k+1)} - \mathbf{y} \right)$$

Primal-dual splitting method

Consider the following optimization problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) + g(\mathbf{x}) + h(\mathbf{A}\mathbf{x})$$

- where $f,g\in\Gamma_0(\mathbb{R}^p)$ and $h\in\Gamma_0(\mathbb{R}^M)$, and f is differentiable.
- This type of problem can be solved by primal-dual splitting method [Condat 2013, Vu 2013]

Set initial value $\mathbf{x}^{(0)}, \mathbf{z}^{(0)}, \gamma_1, \gamma_2 > 0$, then repeat

- Update $\mathbf{x}^{(k+1)} = \text{prox}_{\gamma_1 g} \left(\mathbf{x}^{(k)} \gamma_1 \left(\nabla f(\mathbf{x}^{(k)}) + \mathbf{A}^\mathsf{T} \mathbf{z}^{(k)} \right) \right)$
- Update $\mathbf{z}^{(k+1)} = \operatorname{prox}_{\gamma_2 h^*} \left(\mathbf{z}^{(k)} + \gamma_2 \mathbf{A} \left(2\mathbf{x}^{(k+1)} \mathbf{x}^{(k)} \right) \right)$

June 16, 2020 25

Sound field reconstruction

How to estimate and interpolate continuous sound field from measurements of multiple microphones?

Goal: Estimate continuous $u(\mathbf{r},k)$ inside Ω by using pressure measurements $u(\mathbf{r}_m,k)$ $(m\in\{1,\ldots,M\})$

Visualization, reproduction by loudspeakers/headphones etc…

June 16, 2020 26

Sound field reconstruction

- Interpolation with constraint of homogeneous Helmholtz eq.
- Decomposition of captured sound field into plane-wave or harmonic functions: sound field decomposition

Target region includes some sources

- <u>ill-posed problem!</u>
- Some assumptions must be imposed on source distribution

Homogeneous sound field reconstruction

- > Sound field inside source-free region
 - $\rightarrow u(\mathbf{r}, k)$ satisfies homogeneous Helmholtz

$$(\nabla^2 + k^2)u(\mathbf{r}, k) = 0$$

 $\begin{cases} (\nabla^2 + k^2) u(\mathbf{r}, k) = 0 \\ \text{Unknown boundary condition on room surface} \end{cases}$

Homogeneous sound field reconstruction

Decomposition into element solutions of Helmholtz eq.

Plane-wave function (Herglotz wave function)

$$u(\mathbf{r}) = \int_{\boldsymbol{\eta} \in \mathbb{S}^2} \gamma(\boldsymbol{\eta}) \underline{e^{jk\langle \mathbf{r}, \boldsymbol{\eta} \rangle}} d\boldsymbol{\eta}$$

> Spherical wave function

$$u(\mathbf{r}) = \sum_{\nu=0}^{\infty} \sum_{\nu=-\mu}^{\mu} \alpha_{\nu}^{\mu} \underline{j_{\nu}(kr)} Y_{\nu}^{\mu}(\theta, \phi)$$

> Equivalent source method [Koopmann+1989]

$$u(\mathbf{r}) = \int_{\mathbf{r}' \in \partial D} \psi(\mathbf{r}') \underline{G(\mathbf{r}|\mathbf{r}')} d\mathbf{r}'$$
: single layer potential

Free-field Green's func.:
$$G(\mathbf{r}|\mathbf{r}') = \frac{e^{jk\|\mathbf{r}-\mathbf{r}'\|_2}}{4\pi\|\mathbf{r}-\mathbf{r}'\|_2}$$

[Colton+ 2013]

Sparse plane-wave decomposition

> Representation by overcomplete plane-wave basis functions ($L\gg M$)

$$u(\mathbf{r}) \approx \sum_{l=1}^{L} \gamma_l e^{j\mathbf{k}_l^\mathsf{T} \mathbf{r}}$$
 (\mathbf{k}_l : wave vector of l th plane wave)

lack A limited number of nonzero γ_l is sufficient for approximation

Sound field in a certain star-shaped region can be well approximated by a limited number of plane waves [Moiola+ 2011]

ightharpoonup Matrix form by using dictionary matrix $\mathbf{W} \in \mathbb{C}^{M \times L}$ consisting of plane-wave functions

$$\mathbf{y} = \mathbf{W}\mathbf{p} + \mathbf{e}$$

$$\begin{cases} \mathbf{y} = [u(\mathbf{r}_1), \dots, u(\mathbf{r}_M)]^\mathsf{T} \\ \mathbf{p} = [\gamma_1, \dots, \gamma_L]^\mathsf{T} \end{cases}$$

Sparse plane-wave decomposition

> Sparse approximation by plane-wave dictionary matrix

> Optimization problem for sparse approximation

minimize
$$\frac{1}{2} \|\mathbf{y} - \mathbf{W}\mathbf{p}\|_2^2 + \lambda \|\mathbf{p}\|_p^p \qquad (0$$

Penalty term of ℓ_p -(quasi) norm for inducing sparsity of

June 16, 2020 31

Sparse plane-wave decomposition

> Sparse approximation by plane-wave dictionary matrix

- Improve spatial resolution in sound field reconstruction
- > Application of sparse plane-wave decomposition
 - DOA estimation [Malioutov+ 2005]
 - Nearfield acoustic holography [Chardon+ 2012]
 - Estimation of acoustic transfer functions [Mignot+ 2013]
 - Upscaling of ambisonics coefficients [Wabnitz+ 2013]
 - Multizone sound field control [Jin+ 2015]
 - Exterior and interior sound field separation [Takida+ 2018]

Inhomogeneous sound field reconstruction

- > Sound field inside règion including sources
 - $\longrightarrow u(\mathbf{r},k)$ satisfies inhomogeneous Helmholtz eq.

$$\begin{cases} (\nabla^2 + k^2) u(\mathbf{r}, k) = -\underline{Q}(\mathbf{r}, k) \\ \text{Source distribution} \\ \text{Unknown boundary condition on room surface} \end{cases}$$

Inhomogeneous sound field reconstruction

 $ightharpoonup u(\mathbf{r})$ is represented by the sum of particular and homogeneous solutions:

$$u(\mathbf{r}) = u_{\mathrm{P}}(\mathbf{r}) + u_{\mathrm{H}}(\mathbf{r})$$

 $\triangleright u_{\rm P}({\bf r})$ can be obtained by convolution of source distribution and free-field Green's func.

$$u_{\mathrm{P}}(\mathbf{r}) = \int_{\mathbf{r}' \in \Omega} Q(\mathbf{r}') G(\mathbf{r}|\mathbf{r}') d\mathbf{r}' \qquad \left[G(\mathbf{r}|\mathbf{r}') = \frac{e^{jk\|\mathbf{r} - \mathbf{r}'\|_2}}{4\pi \|\mathbf{r} - \mathbf{r}'\|_2} \right]$$

 \triangleright Integral form of $u(\mathbf{r})$:

$$u(\mathbf{r}) = \int_{\mathbf{r}' \in \Omega} Q(\mathbf{r}') G(\mathbf{r}|\mathbf{r}') d\mathbf{r}' + u_{H}(\mathbf{r})$$

 \blacksquare Estimate $u(\mathbf{r})$ and $Q(\mathbf{r})$ from measurements $u(\mathbf{r}_m)$

Some constraints on source distribution is required to make this problem solvable

Sparse sound field decomposition

ightharpoonup Discretization of region Ω

$$u_{P}(\mathbf{r}) = \sum_{n=1}^{N} \int_{\mathbf{r}' \in \Omega_{n}} Q(\mathbf{r}') G(\mathbf{r}|\mathbf{r}') d\mathbf{r}'$$

$$\approx \sum_{n=1}^{N} G(\mathbf{r}|\mathbf{r}_{n}) \int_{\mathbf{r}' \in \Omega_{n}} Q(\mathbf{r}') d\mathbf{r}'$$

$$\approx \sum_{n=1}^{N} G(\mathbf{r}|\mathbf{r}_{n}) \int_{\mathbf{r}' \in \Omega_{n}} Q(\mathbf{r}') d\mathbf{r}'$$

$$u(\mathbf{r}) \approx \sum_{n=1}^{N} G(\mathbf{r}|\mathbf{r}_n) \int_{\mathbf{r}' \in \Omega_n} Q(\mathbf{r}') d\mathbf{r}' + u_{\mathbf{H}}(\mathbf{r})$$

 \succ Matrix form by using dictionary matrix $\mathbf{D} \in \mathbb{C}^{M \times N}$ consisting of free-field Green's func. (i.e., monopoles)

$$\mathbf{y} = \mathbf{D}\mathbf{x} + \mathbf{z} \qquad \left[\mathbf{y} = [u(\mathbf{r}_1), \dots, u(\mathbf{r}_M)]^\mathsf{T} \right]$$
$$\mathbf{x} = \left[\int_{\Omega_1} Q(\mathbf{r}') d\mathbf{r}', \dots, \int_{\Omega_N} Q(\mathbf{r}') d\mathbf{r}' \right]^\mathsf{T}$$

Sparse sound field decomposition

Linear eq. of measurement model

[Koyama+ JASA 2018]

Assume that source distribution is spatially sparse

Optimization problem for sparse sound field decomposition

$$\underset{\mathbf{x}}{\text{minimize}} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{p}^{p} \qquad (0$$

Sparsity inducing penalty term

[Murata+ IEEE TSP 2018]

Measurement for each time-frequency bin

$$\mathbf{y}_{t,f} = \mathbf{D}_f \mathbf{x}_{t,f} + \mathbf{z}_{t,f}$$

Indexes of time-frequency bins:
$$\begin{cases} t \in \{1, \dots, T\} \\ f \in \{1, \dots, F\} \end{cases}$$

- > Group sparsity for robust and accurate decomposition
 - Sound sources are static for several time frames
 - Acoustic source signals have a broad frequency band

Each $\mathbf{x}_{t,f}$ will have same sparsity pattern

> Tensor-form measurement model

[Murata+ IEEE TSP 2018]

Activated grid

Measurements of each t and f:

$$\mathbf{X}(:,t,f) = \mathbf{x}_{t,f}$$

Optimization problem for group sparse decomposition

June 16, 2020

Tensor-form measurement model

Activated grid

Space
Frequency

Activated Space
Frequency

> Optimization problem for multidimensional sparsity

June 16, 2020

Sparse source signal

[Murata+ IEEE TSP 2018]

> Surrogate func. for mixed-norm penalty term

$$\mathcal{J}_{p,q,q}(\mathbf{X}) = \sum_{n} \left(\sum_{t,f} \left(|\mathbf{X}(n,t,f)|^2 \right)^{\frac{q}{2}} \right)^{\frac{p}{q}}$$

$$\leq \sum_{n,t,f} \frac{p}{2} \eta_n^{\frac{p}{q}-1} \eta_{n,t,f}^{\frac{q}{2}-1} |\mathbf{X}(n,t,f)|^2 + C$$

$$= \mathcal{J}_{p,q,q}^+(\mathbf{X}|\mathbf{\Xi})$$

$$(\text{Equality holds for } \mathbf{X} = \mathbf{\Xi})$$

$$\left\{ \begin{aligned} \eta_n &= \sum_{t,f} |\mathbf{\Xi}(n,t,f)|^q \\ \eta_{n,t,f} &= |\mathbf{\Xi}(n,t,f)|^2 \end{aligned} \right.$$

> Alternately update the parameters

$$\begin{cases} \mathbf{x}_{t,f}^{(i+1)} = \arg\min_{\mathbf{x}_{t,f}} \frac{1}{2} \sum_{t,f} \|\mathbf{y}_{t,f} - \mathbf{D}_f \mathbf{x}_{t,f}\|_2^2 + \frac{1}{2} \lambda \mathbf{x}_{t,f}^{\mathsf{H}} \mathbf{P}_{t,f}^{(i)} \mathbf{x}_{t,f} \\ \mathbf{\Xi}^{(i)} = \mathbf{X}^{(i)} \end{cases} \qquad \qquad \qquad \begin{cases} \left(\mathbf{P}_{t,f}^{(i)}\right)_{n,n'}^2 = \begin{cases} p\left(\eta_n^{(i)}\right)^{\frac{p}{q}-1} \left(\eta_{n,t,f}^{(i)}\right)^{\frac{p}{2}-1}, & n = n' \\ 0, & n \neq n' \end{cases} \end{cases}$$

Iteratively reweighted least-squares algorithm

[Murata+ IEEE TSP 2018]

```
Algorithm 1 Sparse sound field decomposition algorithm using \ell_{p,q,q}-norm penalty.
```

```
Initialize \mathbf{X}^{(0)}, i=0
while loop \neq 0 do
    \Xi^{(i)} = X^{(i)}
    \eta_n^{(i)} = \sum_{t,f} \left| \Xi^{(i)}(n,t,f) \right|^q  for \forall n
     for t = 1 to T do
         for f = 1 to F do
              \eta_{n,t,f}^{(i)} = \left| \Xi^{(i)}(n,t,f) \right|^2 \text{ for } \forall n
             \mathbf{W}_{t,f}^{(i)} = \operatorname{diag}\left(\sqrt{p^{-1}(\eta_n^{(i)})^{1-p/q}(\eta_{n,t,f}^{(i)})^{1-q/2}}\right)
              \mathbf{A}_{t,f}^{(i)} \leftarrow \mathbf{D}_f \mathbf{W}_{t,f}^{(i)}
                 \leftarrow \mathbf{W}_{t,f}^{(i)}(\mathbf{A}_{t,f}^{(i)})^{\mathsf{H}}(\mathbf{A}_{t,f}^{(i)}(\mathbf{A}_{t,f}^{(i)})^{\mathsf{H}} + \lambda \mathbf{I})^{-1}\mathbf{y}_{t,f}
         end for
     end for
     i \leftarrow i + 1
     if stopping condition is satisfied then
         loop = 0
     end if
end while
```

Monotonic non-increase of objective func. is guaranteed

Several extensions of sparse decomposition

- ➤ Non-Gaussian reverberantion [Koyama+ IEEE JSTSP 2019]
 - Explicit modeling of reverberant component such as sparsity in plane-wave domain and low-rankness
 - ADMM algorithm for solving joint optimization
- > Gridless sound field decomposition [Takida+ Elsevier SP 2020]
 - Approximate sources as delta functions
 - Reciprocity gap functional in spherical harmonic domain
 - Closed-form solution using Hankel matrix

Application of sparse decomposition

Sparse decomposition for recording and reproduction [Koyama+ JASA 2018]

- Decomposition stage:
 - Group sparse decomposition of ${f Y}$ into ${f X}$ and ${f Z}$
- > Reconstruction stage:
 - $-\mathbf{X}$ and \mathbf{Z} are separately converted into driving signals
 - Loudspeaker driving signals as sum of two components

Reproduced pressure distribution

> Loudspeaker at (-0.5, -1.0, 0.0) m, speech signal

Spatial aliasing artifacts are reduced by proposed method

OPTIMAL SOURCE AND SENSOR PLACEMENT FOR SOUND FIELD CONTROL

Sound Field Control

Synthesize desired sound field inside Ω by using secondary sources

- High fidelity audio system: synthesizing desired sound field
- Spatial noise cancellation: cancelling incoming noise

Synthesize desired sound field inside Ω by using secondary sources

➤ Representation by single layer potential ⇒ Inverse filter design

$$u(\mathbf{r},\omega) = \int_{\mathbf{r}' \in \partial D} \varphi(\mathbf{r}',\omega) G(\mathbf{r}|\mathbf{r}',\omega) d\mathbf{r}' \qquad (\mathbf{r} \in D)$$
 Sound pressure Driving signals Monopole

What is the best placement of secondary sources (loudspeakers) and sensors (control points/microphones)?

- Dense sampling over the region
 - Too many loudspeakers and microphones to measure transfer function in advance
 - Unstable inverse filter due to high correlation between transfer functions

What is the best placement of secondary sources (loudspeakers) and sensors (control points/microphones)?

- \triangleright Sampling only on boundary of Ω
 - Significant degradation of control accuracy at several frequencies (forbidden frequency problem)

What is the best placement of secondary sources (loudspeakers) and sensors (control points/microphones)?

- > Current method secondary source placement
 - Method based on Gram—Schmidt orthogonalization [Asano+ 1999]
 - Sparse-approximation-based method [Khalilian+ 2016]
 - Most algorithms depend on desired sound field
- > Current method sensor placement
 - Avoid forbidden frequency problem by introducing rigid baffle, directional microphones, and two layer array of microphones
 - Most methods can be basically applied to simple array geometry
 - ➡ Source and sensor placements are independently determined

A method for jointly determining the best placement of secondary sources and sensors for region of arbitrary geometry

Sensor placement in machine learning

> Cost function:

- Measures on Gram matrix ${f T}$ used in experimental design
 - Trace of T^{-1} [Liu+ 2016]
 - Log determinant of T^{-1} [Joshi+ 2009]
- Information-theoretic measures:
 - Entropy [Wang+ 2004]
 - Mutual information [Krause 2008]
- Frame potential [Ranieri+ 2014]

> Algorithms:

- Greedy algorithm
- Convex relaxation
- Heuristics

Not applicable for joint source and sensor placement

Further investigations are given in our overview paper [Koyama+ IEEE/ACM TASLP 2020]

Problem statement

$$u_{
m syn}({f r},\omega)=\sum_{l=1}^L d_l(\omega)g_l({f r},\omega)$$

Driving signal Transfer function

Minimize squared error between synthesized and desired sound fields

$$\underset{d_l(\omega)}{\operatorname{minimize}} \, \mathcal{J} = \int_{\mathbf{r} \in \Omega} \left| \sum_{l=1}^L d_l(\omega) g_l(\mathbf{r}) - u_{\operatorname{des}}(\mathbf{r}, \omega) \right|^2 d\mathbf{r}$$
Desired sound field

➡ Difficult to solve due to domain integral

52

Problem statement

Linear equation by discretizing region

$$\mathbf{u}^{ ext{des}} = \mathbf{G}\mathbf{d}$$

Desired pressure Transfer function matrix

Driving signal by using Moore—Penrose pseudo inverse of G

$$\mathbf{d} = \mathbf{G}^{\dagger} \mathbf{u}^{\mathrm{des}}$$
 Moore—Penrose pseudo inverse

June 16, 2020

Idea

- Empirical Interpolation Method (EIM):
 - Proposed in the context of numerical analysis of partial differential equation [Barrault+ 2004]
 - Given functional space $\mathcal V$ defined on Ω , choose the best interpolation function and sampling points on Ω to approximate any function $v \in \mathcal V$ with greedy algorithm
- > Apply EIM to source and sensor placement [Koyama+ 2018]
 - Regarding transfer function of each loudspeaker as interpolation function and control points as sampling points
 - Greedy algorithm for choosing source / sensor positions using transfer functions between candidate locations

Empirical Interpolation Method (EIM)

- Determine initial interpolation function and sampling point, and repeat the following procedure until interpolation error becomes smaller than threshold
- 1. Compute interpolation $I_Q(v)$ for $v \in \mathcal{V}$ by using interpolation functions h_q and sampling points x_q identified so far

$$I_Q(v) = \sum_{q=1}^Q c_q h_q \qquad \begin{pmatrix} c_q \text{ is solution of the following linear eq.} \\ v(x_q) = \sum_{q'=1}^Q c_{q'} h_{q'}(x_q) \end{pmatrix}$$

- 2. v that maximizes L_{∞} -norm of error between v and its in interpolation $I_Q(v)$ is taken as h_{Q+1}
- 3. Point of maximal absolute value of error between v(x) and its interpolation $I_Q(v)$ is taken as x_{Q+1}
- Given function is guaranteed to be stably approximated below target error

Proposed algorithm

> Applying EIM by regarding functional space Vas transfer functions between candidate locations

- Input: Candidate locations of loudspeakers \mathbf{r}_l $(l \in \{1, \ldots, L\})$ and control points \mathbf{r}_m $(m \in \{1, \ldots, M\})$, transfer function matrix $\mathbf{G} \in \mathbb{C}^{M \times L}$ tolerance error ϵ_{tol}
- Output: Set of indexes of loudspeakers and control points
 - 1. Set Q=1
 - 2. while $\epsilon > \epsilon_{\rm tol}$ do
 - 3. Choose loudspeaker index

$$l_Q = \underset{l=1,...,L}{\arg \max} \|\mathbf{G}_{\cdot,l} - I_{Q-1}(\mathbf{G}_{\mathbf{m}_{Q-1},l})\|_{\infty}$$

4. Choose control-point index

$$m_Q = \underset{m=1,...,M}{\operatorname{arg max}} \left| \mathbf{G}_{m,l_Q} - (I_{Q-1}(\mathbf{G}_{\mathbf{m}_{Q-1},l_Q}))_m \right|$$

5. Compute error

$$\epsilon = \max_{l=1,\dots,L} \left\| \mathbf{G}_{\cdot,l} - I_{Q-1}(\mathbf{G}_{\mathbf{m}_{Q-1},l}) \right\|_{2}$$

- 6. Set Q=Q+1
- 7. end while

Approximation of G below ϵ_{tol} and inverse filter stability are guaranteed

Numerical simulations

- Experiments in 2D sound field
 - Transfer functions simulated by finite element method (FEM) (absorption ratio: 0.10)
 - Loudspeaker candidates:
 - Boundary of rectangular region of 2.4x2.8 m²
 - Regularly discretized into 256 points
 - Control-point candidates:
 - Rectangular region of 0.8x1.0 m²
 - Discretized every 0.04 m
 - Comparison:
 - Proposed method (Proposed)
 - Random (Rand)
 - Regular + Regular (Reg-Reg)
 - Regular + 2 layer (Reg-2L)
 - Desired field: plane wave field (every 10 deg)

Loudspeaker candidates

Numerical simulations

- > Experiments in 2D sound field
 - Control accuracy: Signal-to-Distortion Ratio (SDR)

$$SDR(\omega) = 10 \log_{10} \frac{\int_{\Omega} |u_{des}(\mathbf{r}, \omega)|^2 d\mathbf{r}}{\int_{\Omega} |u_{syn}(\mathbf{r}, \omega) - u_{des}(\mathbf{r}, \omega)|^2 d\mathbf{r}}$$

Filter stability: Condition number in dB

$$\kappa(\mathbf{G}) = 10 \log_{10} \frac{\sigma_{\max}^2(\mathbf{G})}{\sigma_{\min}^2(\mathbf{G})}$$

Loudspeaker candidates

> Synthesized pressure and error distributions at 800 Hz

> Output power of loudspeakers at 800 Hz

Results – broadband case w/ Gaussian noise

Conclusion

- Sparse modeling and its application to acoustic signal processing
 - Source-free region: Harmonic analysis of infinite orders / Sparse plane wave decomposition
 - Region including sources: Sound field decomposition based on sparsity of source distribution
 - Application to recording and reproduction
- Optimal source and sensor placement for sound field control
 - Optimal placement loudspeaker and control points
 - Empirical interpolation method by regarding sound field control problem as function interpolation
 - High reproduction accuracy and filter stability with preventing forbidden frequency problem

Related publications

- <u>S. Koyama</u>, *et al.* "Optimizing source and sensor placement for sound field control: an overview," *IEEE/ACM Trans. ASLP*, 2020.
- Y. Takida, <u>S. Koyama</u>, *et al.* "Reciprocity gap functional in spherical harmonic domain for gridless sound field decomposition," Elsevier Signal Process., 2020.
- N. Ueno, <u>S. Koyama</u>, and H. Saruwatari, "Three-dimensional sound field reproduction based on weighted mode-matching method," *IEEE/ACM Trans. ASLP*, 2019.
- <u>S. Koyama</u> and L. Daudet. "Sparse representation of a spatial sound field in a reverberant environment," *IEEE J. STSP*, 2019.
- H. Ito, <u>S. Koyama</u>, *et al.* "Feedforward spatial active noise control based on kernel interpolation of sound field," *Proc. IEEE ICASSP*, 2019.
- <u>S. Koyama</u>, *et al.* "Sparse sound field decomposition for super-resolution in recording and reproduction," *JASA*, 2018.
- <u>S. Koyama</u>, *et al.* "Joint source and sensor placement for sound field control based on empirical interpolation method," *Proc. IEEE ICASSP*, 2018.
- N. Ueno, <u>S. Koyama</u>, and H. Saruwatari, "Sound field recording using distributed microphones based on harmonic analysis of infinite order," *IEEE Signal Process. Letters*, 2018.
- <u>S. Koyama</u>, *et al.* "Analytical approach to transforming filter design for sound field recording and reproduction using circular arrays with a spherical baffle," *JASA*, 2016.
- <u>S. Koyama</u>, *et al.* "Source-location-informed sound field recording and reproduction," *IEEE J. STSP*, 2015.
- <u>S. Koyama</u>, *et al.* "Sparse sound field representation in recording and reproduction for reducing spatial aliasing artifacts," *Proc. IEEE ICASSP*, 2014.