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Analysis and control of acoustic field

Analysis Control
Microphone " | Loudspeaker

> Visualization and > High-fidelity spatial audio
reconstruction of acoustic field reproduction

> Estimation of source locations > Directivity control and local
and room-acoustic parameters reproduction

> Spatial sound field recording » Spatial active noise control

From theory to application of sighal processing and

inverse problems for acoustic fields




Summary of sound field analysis

Analysis inside region without sources

\ « Sound field reconstruction based on
- harmonic analysis of infinite order

A0 [Ueno+ IEEE SPL 2018]
(8, Tulmk) e . Optimization algorithm for sparse
. '\”\r representation of acoustic field

[Murata+ IEEE TSP 2018]

SN

Analysis inside region including sources

\ - Sparse sound field decomposition in
e reverberant environment [Koyama+

X ?) e Ee |EEE JSTSP 2019]
U ol ’“.)\'\ - Estimation of source parameters based
e " r on Reciprocity Gap Functional [Takida+
Elsevier SP 2020]
« Separation of internal and external
}\e\mzozo sound fields [Takida+ EUSIPCO 2018] 3



Summary of sound field control

« Sound field recording and reproduction in wave-number domain [Koyama+
IEEE(/ACM) TASLP 2013, 2014, JASA 2016]

« Super-resolution in recording and reproduction [Koyama+ IEEE JSTSP 2015,
JASA 2018]

« Sound field control based on weighted mode-matching [Ueno+ IEEE/ACM
TASLP 2019]

« Optimization of source and sensor placement for sound field control
[Koyama+ IEEE/ACM TASLP 2020, IEEE ICASSP 2018]

« Spatial active noise control based on kernel interpolation [Ito+ IEEE
ICASSP 2019, 2020]
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Today’s topics

» Sparse modeling and its application to acoustic signal
processing

> Optimal source and sensor placement for sound field
cotnrol
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SPARSE MODELING AND
ITS APPLICATION TO
ACOUSTIC SIGNAL PROCESSING
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Linear inverse problem

» Suppose that measurement y € R"is modeled by linear
equation with unknown variable x € R" and sensing
matrix D € R®*¥ as

y=Dx-+n

where n € R is additive noise.

» Estimation problem of x with given y and D is
referred to as linear inverse problem.

> Consider the case of IV > M, i.e., underdetermined
problem. This type of problem (normally) has infinitely
many solutions, which means preferable features should
be imposed on the estimate.
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Least-norm solution

» Typical approach to solve underdetermined linear
inverse problem is least-norm solution (a.k.a. minimum-
norm solution), where the following optimization
problem is considered:

minimize ||X||3 subject to y = Dx
X

» This problem can be solved by the method of Lagrange
multiplier as

A —1
x=D'(DD'") 'y
— Regularized solution to increase robustness:

x=D" (DDT +AI) 'y
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Sparse modeling

» Sometimes we would like to impose sparsity on the
estimate.

Y D

» Occam’s razor (law of parsimony):
— Entities should not be multiplied without necessity.

-

4
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Example: images in wavelet domain

» Representing image with small number of coefficients
Original 10% of coefs 3% of coefs

T —

> Distribution of coefficients is sparse:

8

(2]
T

N
I

Amplitude of coefficients
I

o

2 3 4 5 6 7
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Sparsity-inducing norm

> Least-norm solution:

minimize ||X||3 subject to y = Dx
X

> Solution with sparsity-inducing norm:

minimize ||x||, subject to y =Dx  (0<p<1)
X

— where § L
N D
(Z ‘mn‘p> , 0<p<l
x|| = n=1 Counting the number
Ix]l, = \n=1_ g
r » of nonzero elements
lim > |eal’,  p=
\ n=1

— ||+ llp is called £, -norm whereas axioms of norm is not valid for
0<p<l
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Sparsity-inducing norm

> Contour of ||x||, = ¢ with constant cin 2D case.

June 16, 2020 12



Example of sparse solution

> Basis pursuit for £1-norm minimization problem

Observation True
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How to solve sparse optimization problem?

> Algorithms for solving sparse optimization problem can
be classified into three categories:

— Greedy algorithm
* (Orthogonal) matching pursuit, etc--
— Convex relaxation

« Basis pursuit, (Accelerated) proximal gradient, etc---

— Majorization-minimization algorithm

- Iteratively-reweighted least squares, etc:--

— Probabilistic inference

« Sparse Bayesian learning, etc:--
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Majorization-minimization algorithm

> Construct surrogate function £7(x, &) for (non-convex)
objective function £(x)

L(x) < LT(x,€)
L(x) = LT (x,x)
> Alternately updating parameter of surrogate function and
parameter to be optimized

x¥ ) = arg min £F (x, x®))

X

Monotonic non-increase of \

objective function is guaranteed
E(X(k_l_l)) < £+(X(k+1),x(k))
< £+(X(k)7x(k))

\ — E(X(k)) )

4 x(k+:1) ;C(k)
June 16, 2020 15
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-regularization problem

» MM algorithm for £,-regularization problem

1
nﬂMmﬁ@iﬂy—Ibﬂg+AHM@ (0<p<T)

» Sparsity of x can be induced by the regularization term,
but the objective function becomes non-convex for
O<p<l1

2

Plot of |x|” [Elad 2010]
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-regularization problem

> Generalized Gaussian distribution (GGD)

— P.d.f. of GGD

flu;p, B) =

D _lul? ~=p=2

P controls the shape of p.d.f.

> MAP estimation w/ prior distribution of

B p
p(x) = (2€/§6F

4 3

GGD

N
1 ° L . .
(1)) OXp (‘% ; |£Unp> : Prior distribution
p

2
. o
B xXnvap = arg min ||y — Dx||3 + G E |z, |P
n

June 16, 2020
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-regularization problem

» Consider to develop surrogate function of £,-
regularizationtermfor 0 <p <1

» Concave function =z (O < a < 1) lies below tangent
quadratic function z° at 7; therefore,

x|z = lenlp < Z{ o+ (1= 50n) )

2
Y
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-regularization problem

» Surrogate function is developedNas

1 2
£ = Iy~ DxZ+A Y [zl
n=1
1 D N
2 _
<5 ly—Dxly;+A5 Y nhap +C
n=1
= LT (x,n)

_ C isvariable not related to optimization, 7 = [m1,...,1x], and
equality holds for x =1,

> Update rule of X

1 1
x* Y — arg min 5 ly — Dx||5 + 5)\XTP(k)X

p—2
(P(k)> _ {p (:L‘%@) , n=n'

0, otherwise
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-regularization problem

» This minimization problem is simply solved as weighted
least-squares solution:

(k+1) (DTD n )\P(k))_l DTy

» Rewrite with W) = (P*))=1/23nd A®) = DW®) by
using matrix inversion lemma as

<+ — W) A ()T ( AR ABT | M) Ty

— Inverse of N X N matrixisturned into inverse of M x M
matrix. Besides, elements of W(*) are stably computed
compared to pk)
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Iteratively-reweighted least-squares algorithm

> MM algorithm for £,-regularization problem is called
iteratively-reweighted least-squares or focal
underdetermined system solver (FOCUSS)
[Gorodnitsky+ 1997, Figueiredo+ 2007]

» Summary of algorithm:

Set initial value x(?), then repeat
- Update W® = diag (p (xgﬂ)p_Z)
- Update A ) — pw &)

. Update x(*+1) — Wk ART (A(k)A(’“)T + AI) B y
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Beyond sparsity

> Various signal structures other than sparsity can be
induced by vector or matrix norms.

» Signal separation by using constraint of such norms is
well studied in the context of convex optimization

[McKoy+ 2014].
Structure Atomic gauge
Sparse vector (*-norm
Binary sign vector {*°-norm
Low-rank matrix | Nuclear norm / Schatten 1-norm
Orthogonal matrix Schatten co-norm
Row-sparse matrix Row-/!-norm
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Proximal gradient method

» Consider the following optimization problem:
minimize f(x) 4+ g(x)

— where f,g: RP - RU{oco} are proper convex lower

semicontinuous function, which are denoted as f, g € I'4(R?),
and f is differentiable.

— This type of problem can be solved by proximal gradient
method.

Set initial value X9, v > 0, then repeat
» Update x(F+1) = prox. (X(k) — ’ny(X(k)))

- :
Proximal operator:

, 1
prox. s (v) = arg min ¢ f(x) + —||x — VH%
K xedom( f) 27y
June 16,2020 ™ -
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ADMM

» Consider the following optimization problem:

minimize f(x) + g(z) subject to y = Ax + Bz

X,Z

— where f eTo(RP), g € To(RY),and A € RM*P B ¢ RM*4

— This type of problem can be solved by alternating direction
method of multipliers (ADMM) [Boyd+ 2011]

Set initial value z(9, 09, then repeat

2
« Update x* 1) = arg min {f(x) -+ g HAX +Bz® — y + 6% 2}

2
° Update Z(k—H) = arg min {g(x) -+ g HAX(k—H) + Bz -y + H(k) }

» Update g(+1) — g(b) 4 ( Ax(F+D) L Bzt _ y)
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Primal-dual splitting method

» Consider the following optimization problem:

minimize f(x) + g(x) + h(Ax)

X

— where f,g € I'o(RP) and h € FO(RM) ,and fis
differentiable.

— This type of problem can be solved by primal-dual splitting
method [Condat 2013, Vu 2013]

Set initial value X(O),Z(O),%,% > 0, then repeat
. Update x"1) = prox., , (X(k) — M (Vf(x(k)) + ATz(k)))

+ Update 5 (1) — prox . (Zac) + A <2X<k+1> _ X(k)))
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Sound field reconstruction

[ How to estimate and interpolate continuous sound field ]

from measurements of multiple microphones?

\ \ \

» Sound Field Reconstruction

: ______._Source \
Targetregion .- °/ \
\a' 2

Reflected wave v ° \\\Mlcrophone

S
g 5\

Goal: Estimate continuous (T, k) inside{) by using
pressure measurements U(r'p,, k) (m € {1,...,M})

» Visualization, reproduction by loudspeakers/headphones etc---
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Sound field reconstruction
» Target region does NOT include
| \\\ any sources

— Interpolation with constraint of
‘o, tu(rk homogeneous Helmholtz eq.

\r — Decomposition of captured sound field
into plane-wave or harmonic

functions: sound field decomposition
\\
> Target region includes some
\\\ sources

— ill-posed problem!

— Some assumptions must be imposed
r on source distribution

mp
~
N
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\
)
® !
9,
’
) ’
’
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V- 9 o v
//,/ 9 ro_-///. ] &. .//;
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=
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Homogeneous sound field reconstruction

Sound wave IR _\(\Microphone
\ \ S o

» Sound field inside source-free region
m) u(r, k) satisfies homogeneous Helmholtz

ed.
(V2 + EHu(r, k) =0

Unknown boundary condition on room surface
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Homogeneous sound field reconstruction

[ Decomposition into element solutions of Helmholtz eq. ]

» Plane-wave function (Herglotz wave function) \\
u(r) :/ ”Y(’I?)(?jk(ra’?)dn "’
nes? Ly L

> Sphericalwave function (2, (r”“ D \

7 Y g, (kr) Y, (6, ¢) R
v=0rv=—p ‘\\

» Equivalent source method [Koopmann+1989]

u(r) = / »(r")G(r|r)dr’ : single layer potential
r’'e0D

eijr_r, ”2

Free-field Green’s func.: G(r|r') =
Ar||r — r'||2
[Colton+2013]
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Sparse plane-wave decomposition

» Representation by overcomplete plane-wave basis
functions (L > M)

L
~ jkg
u(r) ~ Z/We (k; : wave vector of Ith plane wave)
=1

m) Alimited number of nonzero™i is sufficient for approximation

e

\

Sound field in a certain star-shaped region can be well
approximated by a limited number of plane waves [Moiola+2011]

> Matrix form by using dictionary matrix W ¢ CM**~
consisting of plane-wave functions

{ y = [u(ry),...,u(ray)]’
p=[- 7]

June 16, 2020 30
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Sparse plane-wave decomposition

» Sparse approximation by plane-wave dictionary matrix
y W

> Optimization problem for sparse approximation

|
minimize S |ly - Wol3 + Alpl (0 <p<1

/T~

Penalty term of £,-(quasi) norm for inducing sparsity ofPp ‘

e

e

(I Irrm=s
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Sparse plane-wave decomposition

» Sparse approximation by plane-wave dictionary matrix

Yy A\4%
m) Improve spatial resolution in sound field reconstruction

> Application of sparse plane-wave decomposition
— DOA estimation [Malioutov+ 2005]
— Nearfield acoustic holography [Chardon+ 2012]
— Estimation of acoustic transfer functions [Mignot+ 2013]
— Upscaling of ambisonics coefficients [Wabnitz+ 2013]
— Multizone sound field control [Jin+ 2015]

— Exterior and interior sound field separation [Takida+ 2018]
June 16, 2020 32
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Inhomogeneous sound field reconstruction

Reflected wave \M|Crophone

<

» Sound field inside region including sources
m) u(r, k) satisfies inhomogeneous Helmholtz eq.

(V4 Ek*)u(r, k) = —Q(r, k)
Source distribution
Unknown boundary condition on room surface
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Inhomogeneous sound field reconstruction

> u(r)is represented by the sum of particular and
homogeneous solutions:
u(r) = up(r) + us(r)

> up(r)can be obtained by convolution of source
distribution and free-field Green’s func.

) = [ QUG [Gw) J

r'eQ Arlle — 1|2

> Integral form of u(r):

u(r) = Q"G (r|r")dr + ug(r)

r’' e

m) Estimate u(r) and Q(r) from measurements u(ry)

Some constraints on source distribution is required

to make this problem solvable



Sparse sound field decomposition

> Discretization of region 2 Grid pointI'n_ [IKoyama+ JASA 2018]

A ZG(r|rn) /IGQ Q(r")dr’

n=1 n

D u(r)~ Z G(r\rn)/ Q(r")dr + ug(r)

/EQn

CMXN

» Matrix form by using dictionary matrix D &
consisting of free-field Green’s func. (i.e., monopoles)

y=Dx-+z —y::u(r1)7...,u(rM)]T

- T
X = Q(r")dr',. .., Q(r’)dr’]

L J Q1 Qn
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Sparse sound field decomposition

' K + JASA 201
> Linear eq. of measurement model [Koyamat JASA 2018]

y=Dx+z E}?’Eﬁﬁ%fﬁﬁ% ______________
........ XAy x =R py e
Direct source component Reverberant component S;' ¢<x>{

m) Assume that source distribution is spatially sparse
Yy D Z

> Optimization problem for sparse sound field decomposition

1
minimize §||y — Dx||5 + Allx||D (0<p<1)

4

[(TITTTITTTTTT ]

June 16, 2020 Sparsity inducing penalty term |

36




Mixed-norm penalty for group sparsity

[Murata+ [EEE TSP 2018]
» Measurement for each time-frequency bin

yi,f = DyXe p+ 2ty

ted{l,...,T}
fe{l,...,F}

Indexes of time-frequency bins: [

> Group sparsity for robust and accurate decomposition
— Sound sources are static for several time frames
— Acoustic source signals have a broad frequency band

ac r>r(1t’f will have same sparsity
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Mixed-norm penalty for group sparsity
[Murata+ [EEE TSP 2018]

> Tensor-form measurement model Activated grid
t — S

% .

| —
m Y D)) S| R

Space \
/ Frequency Measurements of each t and f :
Time X(:7t7f) — Xt f

» Optimization problem for group sparse decomposition

| 2
minimize - ; ly = Dx[5 + A\Tp22X)  (0<p<1)

Tp.2.2( S‘ (S‘ X (n,t, f) ) ﬁPenalty term for inducing

N

group sparsity (¢, 5 o-norm)
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Mixed-norm penalty for group sparsity

[Murata+ |IEEE TSP 2018]

> Tensor-form measurement model Activated grid
. ' L
4 n
m S RN 1) TR : 7 /A —
Space
‘[ iFrequency

/ / Sparse source signal
» Optimization problem for multidimensional sparsity

Time

o1
minimize ; Dy —Dx5+ AT 0q(X) (0<p<qg<1)

r

t,f
*_J Multidimensional mixed-
TpaaX) =) (Y 1 X(n,t, f)] ) ﬁ norm penalty term ( -

n norm) p,q,q
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Mixed-norm penalty for group sparsity

) [Murata+ [EEE TSP 2018]
» Surrogate func. for mixed-norm penalty term

Tpq.q(X) = S: (S: (\X(n,t, f)|2) )
t,f

n

bR

p g1 §-1
S Z 5777% nn’t,f|X(n7t7 f)‘2 +C _
n,t, f Mn
— ij,rq,q<X|E) ]
(Equality holdsfor X = &) | "In.t.f

[=E(n,t, f)]?
=E(n,t, f)|?

o
~

> Alternately update the parameters

1
x?; ) — arg min - Z lye s — Dyxyerll3 + )\xt ngz}xt

th tf

== x0 (i), .- { ()" (1) =

0, n #n'

mm) lteratively reweighted least-squares algorithm
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Mixed-norm penalty for group sparsity

[Murata+ IEEE TSP 2018]

Algorithm 1 Sparse sound field decomposition algo-
rithm using £, ; ;-norm penalty.
Initialize X, i =0
while loop # 0 do
=0) — x(0)
D = Yoz [E@(n.t, £)|" for ¥n
fort =1to T do
for f =1 to F do
: ) 2
s = [EO(n,t, f)|” for Vn

i . _ iy 1-pfag (i 1—q/2
W) = diog (o 0) 00 )
A« DWL

(i+1)
Xt f

o o B
— WA (ATHATH £ A1) ey

t.f
end for

end for

t+1+1

if stopping condition is satisfied then
loop =0

end if

end while

Monotonic non-increase of objective func. is guaranteed



Several extensions of sparse decomposition

> Non-Gaussian reverberantion [Koyama+ IEEE JSTSP 2019]

— Explicit modeling of reverberant component such as sparsity in
plane-wave domain and low-rankness

— ADMM algorithm for solving joint optimization

> Gridless sound field decomposition [Takida+ Elsevier SP 2020]
— Approximate sources as delta functions
— Reciprocity gap functional in spherical harmonic domain
— Closed-form solution using Hankel matrix
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Application of sparse decomposition

Sparse decomposition for recording and reproduction [Koyama+ JASA 2018]

/Mlcrophone array Loudspeaker array
8: X Model-ba.sed :ﬁ
; = . - synthesis e |
= 1Y | Sparse Sound Field [
> Decomposition . 7
' Z: : ) —
! ! : 1 WEFR filtering : :
O— [Koyama+2013] g
. Decomposition stage Reconstruction stage

......................................................................................

» Decomposition stage:
— Group sparse decomposition of Y into Xand Z

» Reconstruction stage:
— X and Z are separately converted into driving signals
— Loudspeaker driving signals as sum of two components
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Reproduced pressure distribution

> Loudspeaker at (-0.5,-1.0, 0.0) m, speech signal

Plane-wave-decomposition-

Proposed based method

Spatial aliasing artifacts are reduced by proposed method



OPTIMAL SOURCE AND SENSOR
PLACEMENT FOR
SOUND FIELD CONTROL
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Sound Field Control

| Synthesize desired sound field inside {) by using secondary sources |

() : Control region

O : Secondary source
surface

> High fidelity audio system: synthesizing desired sound field
» Spatial noise cancellation: cancelling incoming noise
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Source and sensor placement

| Synthesize desired sound field inside {) by using secondary sources |

() : Control region

O : Secondary source
surface

> Representation by single layer potential = Inverse filter design

u(r,w) = /'eaD o(r',w)G(r|r',w)dr’  (r € D)

Sound pressurADriving signals\Monopole
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Source and sensor placement

What is the best placement of secondary sources (loudspeakers) and
sensors (control points/microphones)?

(): Control region

A AA
?W?‘?QW?Q o005 .
Relelelefelo]elotelolololol
PPPRPPDRPROED
QPP P0R000
(o]o]oJololelo
LACE

D

O : Secondary source
surface

» Dense sampling over the region

— Too many loudspeakers and microphones to measure transfer
function in advance

— Unstable inverse filter due to high correlation between transfer
functions
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Source and sensor placement

What is the best placement of secondary sources (loudspeakers) and
sensors (control points/microphones)?

(): Control region

O : Secondary source
surface

» Sampling only on boundary of )

— Significant degradation of control accuracy at several
frequencies (forbidden frequency problem)
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Source and sensor placement

What is the best placement of secondary sources (loudspeakers) and
sensors (control points/microphones)?

» Current method - secondary source placement

— Method based on Gram—Schmidt orthogonalization [Asano+
1999]

— Sparse-approximation-based method [Khalilian+ 2016]

m) Most algorithms depend on desired sound field
» Current method - sensor placement

— Avoid forbidden frequency problem by introducing rigid baffle,
directional microphones, and two layer array of microphones

mp Most methods can be basically applied to simple array geometry

m) Source and sensor placements are independently determined

A method for jointly determining the best placement of secondary

sources and sensors for region of arbitrary geometry
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Sensor placement in machine learning

> Cost function:
— Measures on Gram matrix T used in experimental design
 Trace of T~![Liu+2016]
« Log determinant of T~ [Joshi+ 2009]
— Information-theoretic measures:
« Entropy [Wang+ 2004]
« Mutual information [Krause 2008]
— Frame potential [Ranieri+ 2014]
> Algorithms:
— Greedy algorithm
— Convex relaxation
— Heuristics

Not applicable for joint
source and sensor placement

Further investigations are given in our overview

paper [Koyama+ I[EEE/ACM TASLP 2020]
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Problem statement

» Synthesized sound field by L loudspeakers

Usyn (T, W) Zdl
\ Driving s|g\nal\Transfer function

» Minimize squared error between synthesized and desired sound
fields

2

Z d; (w — Uges(r,w)| dr

=1

minimize J =
di(w) reQ

Desired sound field

) Difficult to solve due to domain integral
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Problem statement

Choose the best )
loudspeaker and control-
point positions from
candidates
w.r.t. control accuracy and
filter stability )

» Linear equation by discretizing region
Driving signal

et

\Desired pressurée~_Transfer function matrix
> Driving signal by using Moore—Penrose pseudo inverse of G

d = GTu®

\Moore—Pen rose pseudo inverse
June 16,2020 53




» Empirical Interpolation Method (EIM):

— Proposed in the context of numerical analysis of partial
differential equation [Barrault+ 2004]

— Given functional space V defined on (), choose the best
interpolation function and sampling points on 2 to
approximate any function v € V with greedy algorithm

> Apply EIM to source and sensor placement [Koyama+2018]

— Regarding transfer function of each loudspeaker as interpolation
function and control points as sampling points

— Greedy algorithm for choosing source / sensor positions using
transfer functions between candidate locations
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Empirical Interpolation Method (EIM)

» Determine initial interpolation function and sampling point, and
repeat the following procedure until interpolation error becomes
smaller than threshold

1. Computeinterpolation Ig(v)for v € V by using interpolation
functions h, and sampling points z4 identified so far

0 (Cq is solution of the following linear eq)
Q
IQ(U) — Zcqhq U(xq) — Z Cq’hq’ (xq)
= \- ¢'=1 /

2. U that maximizes L..-norm of error between v and its in
interpolation I (v)is taken as hg 4

3. Point of maximal absolute value of error between v(x)and its
interpolationlg(v)is taken as xQ+1

mp Given function is guaranteed to be stably approximated below
target error

June 16, 2020 55



Proposed algorithm

> Applying EIM by regarding functional space Vas transfer
functions between candidate locations

> Input: Candidate locations of loudspeakers X7 (I € {1,...,L}) and
control points Tm (m € {1,..., M}), transfer function matrix G € CMxL
tolerance error €l
> Output: Set of indexes of loudspeakers and control points
1. SetQ=1
2. whilee > €151 do
3. Choose loudspeaker index
ZQ = azrg max ||G [ — IQ 1(GmQ—1’l)Hoo
4, Choose control- p’éiht index
mg = arglmax ‘Gm’lQ — (IQ_l(GmQ_l,lQ))m‘
5.  Computeerror
€ = l:IrllaX HG’>l — IQ—l(GmQ—17l>H2
6. SetQ=Q+1 "
7. end while rs ]
Approximation of G belowétol and

l inverse filter stability are guaranteed
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Numerical simulations

» Experiments in 2D sound field
— Transfer functions simulated by finite

element method (FEM) (absorption ratio: Room geometry
0.10) Y
— Loudspeaker candidates: 3
- Boundary of rectangular region of 2.4x2.8 m? 2/ Control region
« Regularly discretized into 256 points 1l /
— Control-point candidates: - /

O L
« Rectangular region of 0.8x1.0 m? Lo

- Discretized every 0.04 m 4

— Comparison: 2| /
« Proposed method (Proposed) o Y S
« Random (Rand) '2/'1 o
* Regular + Regular (Reg-Reg) Loudspeaker candidates

« Regular + 2 layer (Reg-2L)
— Desired field: plane wave field (every 10 deg)
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Numerical simulations

» Experiments in 2D sound field
— Control accuracy: Signal-to-Distortion

Ratio (SDR) .| Room geometry
Udes (T, W)|2dr I
SDR( ) = 1010g10 f "UJ fﬂi i) ( ’Ujd)’<r w)|2dr 3
o [tsyn( °s 2| Control region
/
— Filter stability: Condition numberindB ¢! /
> ol : I
a?nax G
k(G) = 101logy, > ((G)> 1
min ) /
-3 .

2/1 o 1 2
X [m]

Loudspeaker candidates
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Results - single frequency case

Condition number
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Results - single frequency case

Condition number
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Results - single frequency case

» Synthesized pressure and error distributions at 800 Hz
Proposed Rand Reg-Reg

Pressure

Error
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Results - single frequency case

> Output power of loudspeakers at 800 Hz
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Results - broadband case w/ Gaussian noise
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Conclusion

» Sparse modeling and its application to acoustic signal
processing

— Source-free region: Harmonic analysis of infinite orders / Sparse
plane wave decomposition

— Region including sources: Sound field decomposition based on
sparsity of source distribution

— Application to recording and reproduction

> Optimal source and sensor placement for sound field control
— Optimal placement loudspeaker and control points

— Empirical interpolation method by regarding sound field control
problem as function interpolation

— High reproduction accuracy and filter stability with preventing
forbidden frequency problem
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